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An integrated view concerning the probabilistic organization of quantum mech- 
anics is first obtained by systematic confrontation of the Kolmogorov formula- 
tion of the abstract theory of probabilities with the quantum mechanical 
representation and its factual counterparts. Because these factual counterparts 
possess a peculiar space-time structure stemming from the operations by which ~ 
the observer produces the studied states (operations of state preparation) and 
the qualifications of these (operations of measurement), the approach brings 
forth "probability-trees," complex constructs with treelike space-time support. 
Though it is strictly entailed by confrontation with the abstract theory of prob- 
abilities as it now stands, the construct of a quantum mechanical probability tree 
transgresses this theory. It indicates the possibility of an extended abstract theory 
of probabilities: Quantum mechanics appears to be neither a "normal" prob- 
abilistic theory nor an "abnormal" one, but a pioneering particular realization 
of a future extended abstract theory of probabilities. The integrated perception 
of the probabilistic organization of quantum mechanics removes the current 
identifications of spectral decompositions of one state vector, with superpositions 
of several state vectors. This leads to the definition of operators of state prepara- 
tion and of the calculus with these and to a clear understanding of the physical 
significance of the principle of superposition. Furthermore, a complement to the 
quantum theory of measurements is obtained. 

1. P R E L I M I N A R Y  

In this work we combine  results already exposed in other works 

(Mugur-Schfichter,  1983, 1984, 1985, 1991, 1992a,b). But the lighting is 
new, concent ra ted  u p o n  the definit ion of  operators  of  state prepara t ion  and  
the physical significance of  the principle of superposi t ion.  

Sometimes the exposit ion reproduces ad literam previously published 

texts. This reflects the fact that  in the present stage of  the development  of  
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our views the expression of the ideas that we try to convey seems to us to 
have reached a status of equilibrium (or optimality) which we are reluctant 
to disturb. 

2. THE QUANTUM MECHANICAL PROBABILITY TREES 

2.1. The Abstract Theory of Probabilities, Physical Probabilistic Theories, 
Quantum Mechanics 

In Kolmogorov's formulation of the abstract theory of probabilities 
any probability measure ~r is defined inside a probability space [U, r, rr], 
where U = {ei} (iel, I an index set) is a universe of elementary events ei, r 
is an algebra of events chosen on U, and zc is a probability measure posed 
on r. Furthermore, the universe U is conceived to be produced by a random 
phenomenon. But currently this supposed random phenomenon is neither 
defined nor symbolized. Throughout what follows this lacuna will be com- 
pensated: Let us denote a random phenomenon by (P, U),  where P is an 
"identically" reproducible procedure, each realization of which brings forth 
one elementary event eieU, in general variable from one realization of P to 
another one (notwithstanding the supposed identity of the reiterations), 
whereby the whole universe U is generated. In order to express explicitly 
that each probability space is tied to some random phenomenon, we shall 
always consider a complete "probability chain" where the probability space 
is preceded by the explicit symbolization of the corresponding random 
phenomenon: 

(e,  u )  ~ [u , r ,  ,r] (1) 

The abstract theory of probabilities does not describe specified phenom- 
ena, it only introduces symbols and defines the calculi with these characteriz- 
ing any probabilistic conceptualization of phenomena of any nature. As 
soon as some specified domain of reality undergoes a probabilistic conceptu- 
alization, an interpretation of the abstract theory is obtained. Inside this 
interpretation, unavoidably, some probability chains are supposed, but 
where now the constituting symbols point more or less explicitly toward 
entities from the described domain of reality. So aparticular semantics comes 
in. But very often when physical problems are treated probabilistically only 
the probability measures are defined explicitly and are symbolized. The ele- 
mentary events and the algebra of events are usually indicated by words 
only, while currently the random phenomenon which produces them remains 
entirely implicit. However, by reference to the abstract theory of probabilit- 
ies, it is obvious that without a universe of elementary events, without an 
algebra of events chosen on this universe, a probability measure simply is 
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not defined. It does not conceptually exist. A probability measure alone is 
not a concept, it is a rag of a concept. Furthermore, by definition, in the 
absence of any random phenomenon, a universe of elementary events cannot 
emerge, hence no probability space either: The probability chains (1) are 
indivisible molds imposed by the abstract theory of probabilities. So what 
are the particular probability chains specific of quantum mechanics? What 
is the specific semantics toward which point the quantum mechanical prob- 
ability chains? 

2.2. The Quantum Mechanical Representation of the Probabilistic Aspects 
from the Theory 

For the sake of simplicity, throughout what follows we consider exclus- 
ively the basic case of only "one microsystem," whatever definition one 
associates to this concept. This will suffice for conveying the essence of our 
view. 

2.2.1. The Formal Quantum Mechanical Probability Chains 

Consider a pair ([g), A) where [g)  = [g(t)) is the state vector assigned 
at the time t to the considered microsystem S, and A is a Hermitian operator 
representing a dynamical observable--in the mathematical sense~ef ined 
for S. For each such pair the quantum mechanical formalism defines a family 
of probability densities to(g, aj), j e J  (J an index set) for the emergence of 
an eigenvalue aj of the observable A when a measurement of A is performed 
on S in the state [Vt). Namely, it is postulated that the specified probability 
density can be calculated by use of the formula (for simplicity we suppose 
a nondegenerate situation) 

VjeJ, ~r(r aj) = IKujl~,>l 2 (2) 

where lu;) is the eigenvector corresponding to the considered eigenvalue 
aj, determined, like aj, by the equation Aluj)= ajluj) for eigenvectors and 
eigenvalues of A. Usually the algorithm (2) for the computation of probabil- 
ity measures is postulated without any explicit specification of the probability 
space where the measure (2) is incorporated, nor, afortiori, of the random 
phenomenon from which this space stems. But it is obvious that the space 
which contains the measure (2) can be represented by 

[a, rA, Jr(w, A)] (3) 

where the universe of elementary events a = {aj,jeJ} (J an index set) is the 
spectrum of the observable A, rA is the total algebra of events on a, and 
~r(g, A) is the probability density measure on ra determined, via the law of 
total probabilities, by the elementary probability density (2). So the whole 
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probability chain corresponding to a space (3) can be represented by the 
writing 

(IV), A) ~ [a, rA, 7r(~', A)] (1') 

This is the sought integrated representation of the formal quantum 
mechanical probability-chains, achieved with the help of the quantum mech- 
anical descriptors. 

2.2.2. The Factual Quantum Mechanical Probability Chains 

The formal chains (1') are only a coded representation of other, factual 
quantum mechanical probability chains. Let us now identify these factual 
chains. 

The Factual Quantum Mechanical Probability Spaces. We postpone the 
specification of the factual random phenomenon corresponding to the sym- 
bol (Ivt), A) from the chain (1') and we consider first only the space (3), 
[a, rA, 7r(~t, A)] involved in this chain. The corresponding factual space can 
be immediately specified as follows: 

[VA(DA, t2), rA, tc(u/, MA)I (3') 

where A designates an observable and numerically valued physical aspect of 
a macroscopic device DA able to generate certain materializations of the 
numerical values to be assigned to the quantum mechanical observable (in 
the mathematical sense this time) A, namely "needle positions" of DA; 
V.4(DA, tA) is the universe of all the possible values Vj of the physical aspect 
A of DA, a universe brought forth by "one" realization of what is globally 
called a "measurement process" of the observable A, consisting by definition 
of a very big number of reiterations of a registration of a value ~, operated 
each time by starting from the state of S symbolized by the state vector IV) 
newly prepared and each such registration covering some spatial domain dA 
and beginning at a time t when the state vector of S is IV) and then lasting 
for some nonnull time interval (tA- t)> 0 (let us denote this measurement 
process by MA(~, DA)); rA is the total algebra on the universe VA(DA, tA); 
and Jr(~,, MA) is the density of the probability measure put on rA, depending 
on the state labeled by the state vector IV) and on the measurement process 
MA performed on this state. 

The probability measure rc(~, MA) on the algebra rA from the probabil- 
ity space (3') is determined, via the law of total probabilities, by the probabil- 
ity density 7r(Vt, MA, Vj) postulated on the universe VA(D~, tA)= { Vj,j~J} 
of elementary events from this space. 
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The Factual Quantum Mechanical Random Phenomena. What is the fac- 
tual random phenomenon that brings forth the universes of elementary 
events VA(DA, tA) = { Vj,jeJ} from a factual quantum mechanical probabil- 
ity space (3')? This random phenomenon possess a complex structure. It 
brings in a sequence of three partial procedures covering three distinct space- 
time domains: 

1. The first partial procedure is the preparation operation P(Vo) which, 
at its final moment to (supposed to be definable), introduces an initial state 
of S represented by the state vector Ir this operation covers 
some nonnull space-time domain [At • At0]p. 

2. The second partial procedure, which does not necessarily exist, is a 
process E(H, to, t) of evolution of the initial state of S, leading at the time 
t to the state with state vector Iv(t))  = IV). When it does exist, this evolution 
(formally described by the writing IV)=T(H,  to, t)lVo), where T(H, to, t) is 
the acting propagator) covers some new space-time interval [At x At]e, 
where At = t - to. 

3. The third partial procedure is the measurement operation 
MA (V, DA) from the definition of the observable space (3'), performed on 
the state of S symbolized by the state vector IV)- 

As soon as the time t > to is fixed, the succession 

P =  [P(Vo), E(H, to, t), MA(V, DA)] (4) 

constitutes "'one identically reproducible procedure P," each reiteration of 
P reestablishing the origin of times to. Note that the succession of only the 
first two partial procedures from (4) can be regarded as a preparation opera- 
tion P(V) producing the studied state represented by the state vector IV)= 
T(H, to, t)lv0). So we can also write 

P =  [P(v), MA(V, DA)] (4') 

where the initial operation P(V0) and the evolution symbolized by T(H, to, t) 
become implicit. 

Each realization of the procedure P brings forth one, Vi, among all the 
various possible elementary events from the universe of elementary events 
U = VA. Thus we are finally in presence of a random phenomenon (P, U)  in 
the standard sense of the term, namely 

(P, U)  = ([P(v0), E(H, to, t), MA (V, DA)], VA (DA, tA)) (5) 

o r  

(P, U ) = ([P(v), MA (V, DA)], VA (DA, tA)) (5') 
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The Factual Quantum Mechanical Probability Chains. So the factual 
quantum mechanical probability chains can be written as follows: 

([P(~), MA (V t, D.4)], VA (DA, tA)) "~ [VA (DA, tA), "ca, ~r(v, MA)] (1") 

The expressions (3') to (1,) indicate now explicitly and exhaustively the 
specific semantic contents of the quantum mechanical probability chains. 

2.2.3. The Connection between the Factual and the Formal Quantum 
Mechanical Probability Spaces 

How can we translate a factual observable quantum mechanical prob- 
ability space into the corresponding formal space so as to be able to apply 
to it the quantum mechanical algorithms? 

In quantum mechanics each eigenvalue ajea is posited to be calculable 
as a function fA(Vj) of the observed factual value VjeVA (DA, t2) which is 
labeled by the same index j e J :  

aj = fA(Vj) (6) 

Furthermore, each observable elementary probability density re(g, MA, V~) 
is posed to be numerically equal to the corresponding formal elementary 
probability density, i.e., for any IV) and anyje  J, it is postulated that (degen- 
erate cases being excluded) 

tr(~t, MA, Vj) = tr(~,, aj) = I<ujl~,>l 2 (7) 

where luj) is the eigenvector of the observable A corresponding to the eigen- 
value aj =fA(Vj). [Notice that thereby aj can be regarded as a random vari- 
able on the factual space (3'), a space that is not defined inside the 
formalism.] In this sense, the formal probability density (2) is a "predictional 
law," verifiable with the help of the relative frequencies of emergence of the 
observed values ~, at the limit of large numbers. 

Equations (6) and (7) form the key of the code which translates the 
factual observable quantum mechanical probability space (3') into the for- 
mal space (3). Any quantum mechanical prediction belongs to some formal 
probability space (3) corresponding to a factual space (3'). 

2.2.4. The Processual Roots of the Quantum Mechanical Elementary 
Events in the Sense of Probabilities 

The expression (5) of a factual quantum mechanical random phenom- 
enon involves reiterations of a chain of operations and processes: 

[(preparation operation P(~'o))-(evolution process E)-(measurement 
operation MA)-(registration of a needle position ~ of the utilized device 
DA)] (eqmce) 
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[(eqmce) : elementary quantum mechanical chain experiment] : These are the 
processual roots of  the quantum mechanical elementary events in the sense of 
probabilities. 

An elementary quantum mechanical chain experiment possesses a 
remarkable unobservable depth wherefrom there emerges into the observable 
only the extremity Vj,j~J, that contributes to the construction of the factual 
observable universe of elementary events VA(DA, tA)={Vj,jeJ}.  Each 
observable quantum mechanical "event" (nonelementary) from an algebra 
rA from a factual quantum mechanical probability space (3') contains inside 
its semantic substratum all the unobservable chains of operations and pro- 
cesses forming the elementary quantum mechanical chain experiments that 
end up with the registration of a needle position Vj contained in that factual 
observable quantum mechanical event. So any quantum mechanical pre- 
diction concerns either an elementary quantum mechanical chain experiment 
or a union of such experiments. The elementary quantum mechanical chain 
experiments (eqmce) yield the "fibers" out of which is made the factual sub- 
stance of  the quantum theory. 

2.2.5. Partial Conclusion 

We are now endowed with an explicit knowledge of the relations 
between, on the one hand, the basic abstract concepts of the probabilistic 
conceptualization (identically reproducible procedure P, universe of elemen- 
tary events U, algebra of events r, probability measure Jr), and on the 
other hand, the quantum mechanical formal descriptors, state vectors IV t),  
observables A, eigenvectors luj), eigenvalues aj. It appears that quantum 
mechanics contains definite realizations of each basic concept from the pre- 
sent abstract theory of probabilities. So, in this sense, it can be asserted that 
quantum mechanics is not an "abnormal" probabilistic theory. Furthermore, 
we have also explicated the specific semantical content assigned by the quan- 
tum mechanical description to the basic abstract probabilistic concepts. 
Now, do these first results entail that quantum mechanics is a "normal" 
pr0babilistic theory? 

2.3. The Probability Trees of State Preparations 

Wc arrive now at the crucial point of this section, where new consequen- 
ces of the preceding analysis will manifest themselves. 

We have shown that any quantum mechanical prediction concerns one 
or several elementary quantum mechanical chain experiments. We shall now 
show that the ensemble of all the elementary quantum mechanical chain 
experiments falls into classes of  metastructures possessing a treelike space- 
time organization. 
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Let usfix a preparation P(g0), a time interval At = t -  to, and a Hamil- 
tonian H. Consider now the ensemble of all the probability chains (5) or (5') 
corresponding to the fixed pair (P(g0), I g )  ) and to all the distinct dynamical 
observables A, B, C, D . . . .  defined in quantum mechanics: The chains from 
this ensemble constitute together a certain unity, because of their common 
provenance (P(~,o), I g ) ) .  What is the space-time structure of this unity? 

For all the chains from the considered unity, the space-time support of 
the operation of state preparation P(g0) and of the Schr6dinger evolution 
T(H, to, t)[~o)= I~), t>  to, of the prepared state which follows this opera- 
tion is, by construction, the same, a common space-time trunk. If in particu- 
lar [~)=1~'0), i.e., if t=  to, then the trunk is reduced to the operation of 
state preparation alone. 

Consider now the space-time supports of the measurement processes 
MA involved in this unity. The ensemble of these processes splits into suben- 
sembles Mx, M r  . . . .  of mutually "compatible" processes of "measurement 
evolution" corresponding to mutually commuting observables. 

Contrary to many very confusing considerations concerning "successive 
measurements of compatible observables" (versus the projection postulate) 
that can be currently found in the textbooks of quantum mechanics, let us 
emphasize this: Each one measurement evolution from the subensemble Mx 
is such that each registration of a value Vj of the "needle position" of the 
macroscopic device Dx associated with Mx permits us to calculate, from the 
unique datum Vj, via a set of various theoretical connecting definitions (6), 
aj =fA(V3), bj =fB(Vj), �9 �9 �9 all the different eigenvalues aj, bj . . . . .  labeled 
by the same index j, for, respectively, all the observables A, B . . . . .  measur- 
able by a process belonging to the class Mx. This entails that for all the 
commuting observables corresponding to one same class Mx, the process of 
registration of a value of the "needle position" of the device Dx can be one 
common process covering one common space-time support (no succession 
whatever is necessary). While this is not possible for two noncommuting 
observables belonging to two distinct classes Mx and M r: 

This is what is commonly designated as "'Bohr complementarity," nothing 
else. 

Now, this entails that, globally, the ensemble of all the factual probabil- 
ity chains (1") corresponding to a fixed pair (P(vt0), I~t)) constitutes a unity, 
a metaconstruct, with a branching, treelike space-time structure. Let us sym- 
bolize this treelike structure by Y-(Vt0, qt) and let us call it a "quantum 
mechanical probability tree" (in short, a probability tree). [Since all the 
probability trees involving the same studied state vector I~') introduce the 
same branch structure, carrying on top the same probability spaces, in con- 
texts where the distinction between the state vector of the initially prepared 
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state and that of the studied state is not relevant we shall assume that 
I~t)-  ]~t0) and the abbreviated symbol Y(~t) can be utilized.] 

So the pairs (P(~t0), I~t)) define on the ensemble of all the quantum 
mechanical probability chains a partition in probability trees. Afortiori, they 
define such a partition also on the ensemble of all the elementary quantum 
mechanical chain experiments (eqmce) out of which the quantum mechanical 
random phenomena are made. 

Figure 1 provides a simplified example of a probability tree of a state 
preparation, with only four observables, and making use of somewhat abbre- 
viated notations: A, B, C, D are physical observable aspects ("needle posi- 
tions" of macroscopic devices) corresponding to the quantum mechanical 
observables A, B, C, D, respectively. The measurement process Mc,~ corre- 
sponds to two commuting observables C, D: (the commutator of C and D 
is zero, [C, D] = 0), while MA and Mn correspond to two noncommuting 
observables A, B with [A, B] r The notations (3')A, (3')n, and (3')c,o 
indicate the observational spaces (3') corresponding, respectively, to the 
measurement processes MA, Mn, and McD performed on the state represen- 
ted by Iv)=T(t0,  t, H)l~t0). Each one of the spaces (3') emerges at some 
specific time tA, tn, and tc.D (a statistical time, defined with respect to the 
reiterated origin to). The commuting observables C, D generate together one 
common branch producing an observable space (3') characterized in more 
detail, namely with respect to both observables involved. A(P(~to)), A(E), 
and A(P(v)), indicate, respectively, the space-time domains covered by the 
process of preparation P(~0) of the initial state with state vector I~t0), of 
evolution E(to, t, H ) represented by T(t0, t, H )] Vo), or, globally, of prepara- 
tion P(qt)=[P(v0), E(t0, t, H)] of the state with state vector [Vt). Here 

f . . . . . . . . . . . . .  

AN a(CD ,~/) ,,."r r (y, 

'a . . . . . . . . . . . . . . . .  (3'bY . ~ ~ L  J~ ,v J, 

it , t A - , .  --~ 

Io - - . . . . .  , , , , , / , / , , / , / , ,  ^(P(q)) 

,,[ 111 ........... I I A(P(~O)) ~ • 

Fig. 1. A quantum mechanical probability tree ~d"(P(vo), IV)). 
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A(A, V), A(B, ~'), and A(CD, ~), indicate, respectively, the spacetime 
domains covered by the measurement evolutions MA, Ms, and Mco.  

A quantum mechanical probability tree is a remarkably comprehensive 
metastructure of probability chains. Most of the fundamental algorithms of 
the quantum mechanical calculus which combine one normed state vector, 
with the dynamical operators representing the quantum mechanical observ- 
ables, can be defined inside--any--one tree ~--(P(~0), I~)) :  

1. The mean value of an observable A, in a state with state vector IV), 
namely 

(~'IAIv), VI~,), VA 

2. The uncertainty theorem, for any pair of observables, 

(vI(AA)21g)(~'I(AB)2Ig) >I(~ 'I( i /2)(AB- BA)I~,)I 

=(1/2)(h/27r),  VIV), VA, B 

3. The principle of spectral decomposition (expansion postulate) 

I~) = E c(~, aj)luj) 
J 

VIv), VA: Aluj)=ajluj) [c(~,, aj): the expansion coefficients] 

which permits us to calculate the probability density rc(l~), aj) via the prob- 
ability postulate 

~r(V, a j )=  I(ujl ~,)12= Ic(~,, aj)l 2 

4. Finally, the whole quantum mechanical "transformation theory" 
from the basis of an observable A to that of an observable B 

c( v ,  bk) = ~. akjc( ~, aj ) 
J 

VA, B: Aluj>=ajluj> and Blvk>=bklvk>, VjeJ, V k e K  

where J and K are the index sets for the eigenvalues of, respectively, A and 
B, and a~j= <vkluj> are the transformation coefficients. 

But as soon as either the principle of superposition or the orthodox 
quantum mechanical representation of successive measurements comes into 
play, the corresponding quantum mechanical algorithms cease to be 
embeddable into one single probability tree: there the embeddability into 
one tree hits a limit. Several trees have to be combined. So a still higher 
degree of complexity than that of only one probability tree is formed and 
acts inside the organization implicitly reached by the probabilistic conceptua- 
lization hidden inside the quantum mechanical formalism. The quantum 
mechanical formalism contains implicit calculi with whole probability trees. 
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3. BEYOND KOLMOGOROV'S THEORY OF PROBABILITIES: 
PROBABILISTIC META AND META-METADEPENDENCE 

We have performed an attentive analysis of the connections between 
Kolmogorov's standard fundamental probabilistic concepts (identically 
reproducible procedure, universe of elementary events, an algebra of events 
on this universe, a probability measure on this algebra), the main descriptors 
of the quantum mechanical formalism (state vectors, operators, eigen- 
functions), and the factual counterparts of these. This, because of the space- 
time characteristics of the factual counterparts of the quantum mechanical 
descriptors, brought forth, with a sort of inner necessity, the probabilistic 
metaconstruct with treelike space-time support described above. But this 
metaconstruct of distinct probability chains, though it has been produced 
by systematic confrontation with the standard probabilistic concepts, trans- 
cends the abstract theory of probabilities as it now stands: So far the most 
complex basic probabilistic structure explicitly defined in the theory of prob- 
abilities is one probability space. Not even the notion of one probability 
chain is explicitly defined as a monolithic construct. Afortiori, the concept 
of a probability tree, which connects several irreducibly distinct probability 
chains, is not defined in the current theory of probabilities. Are these novel- 
ties probabilistic "anomalies"? Inasmuch as they are rooted in the current 
abstract theory of probabilities, it seems more adequate to regard them as 
germs of a possible extension of this theory. Of course, the fact that the 
quantum mechanical usage of probability measures exceeds the "classical" 
theory of probabilities was perceived long ago (e.g., Mackey, 1963; Gudder, 
1976; Suppes, 1966; Mittelstaedt, 1976; van Fraassen and Hooker, 1976, 
and many others). But this transgression is usually mentioned in negative 
terms: "nonembeddability" into a unique probability space of the quantum 
mechanical measures corresponding to noncommuting observables, which is 
an "anomaly" that "hinders" a classical definition of a conditional probabil- 
ity for two incompatible events, etc. The concept of probability tree permits 
us to develop a constructive perception. 

3.1. Probabilistic Metadependence Via a Common Potentiality 

The quantum mechanical transformation theory (c(~', bk) = 
~.j akjc(Ig, aj), VA, B: Aluj) =ajluj), BlVk) =bklVk~, VjeJ, VkeK; J, K index 
sets; A, B two noncommuting observables, aky = (VklUy) the transformation 
coefficients) permits us to determine entirely, from the knowledge of the 
probability measure z (~ ,  ay) from one branch of a probability tree, any 
other probability measure ~r(~, bk) belonging to another branch of that 
same tree. Indeed the equalities Ic0g, bk)12=l~,j tlkjC(~g, aj)l 2, VjeJ, VkeK, 
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are equivalent to the specification of a funcational relation 

lr(~,, bk)= FQM[E(IV, aj)] 

between the probability measures corresponding to the two noncommuting 
observables A and B. But the standard concept of functional relation 
between two probability measures does not singularize the particular sort of 
probabilistic connection between two probability measures introduced by 
the quantum theory. Nor does it permit us to recover it fully, as shown by 
Cohen (1988, pp. 991-993). As is stressed by the index QM, we are in the 
presence of a specifically quantum mechanical functional relation. What 
status can we assert for it? 

According to the current theory of probabilities the concept of "proba- 
bilistic dependence" is by definition confined inside one probability space 
where it concerns isolated pairs of events. Two events are tied by a "proba- 
bilistic dependence" if knowledge of one of these events "influences" the 
expectations concerning the other one. So the relation ~r(~,,bk)= 
FQM[Jr(v, aj)] of mutual determination of the probability measures from a 
quantum mechanical probability tree can naturally be regarded as a "maxi- 
mal probabilistic metadependence" : "maximal" because it consists in mutual 
determination; "probabilistic" because, though this determination is a cer- 
tainty about "influence," nevertheless it concerns probabilistic constructs; 
"metadependence" because it concerns, not pairs of events from one spdce, 
but globally pairs of probability measures on entire algebras of events, which, 
with respect to events, are metaentities. (An explicit definition of this meta- 
dependence can be found in Mugur-Sch/ichter (1992c).) 

Now, if this view and language are accepted, what has just been named 
the probabilistic metadependence defined by the quantum mechanical trans- 
formation theory appears as reflecting the studied state with state vector IV) 
from the common trunk o f  the tree. This state, which stems from a preparation 
operation P(go) and then might have evolved according to some law 
IT(to, t, H ) l ~ o ) =  Iqt), but that has never yet been observed, has to be con- 
ceived of (in consequence of this lack of previous qualifications) merely as 
a monolith of still nondifferentiated observational potentialities that sets a 
genetic unity beneath the various incompatible measurement processes of 
actualization of this or that particular observational potentiality, leading to 
this or that actualized observable space (3'). [Though in quite different con- 
texts, Bohm (1951), de Broglie (1956), and Primas (1990), as well as other 
authors, have also explicitly stressed the multiple potential meaning of the 
quantum mechanical concept of state.] 

The probability tree o f  a studied state with state vector IV) is a complex 
unity which, with respect toqhe observable manifestations of  a microsystem, 
possesses a "potential-actualization-actualized character." 
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The quantum mechanical functional relations FQM between the probability 
measures from irreducibly distinct observable spaces----considered as 
wholes--belonging to a same probability tree, reflect the genetic unity of 
these spaces via the common observational potentialities captured inside the 
state from the trunk of the tree. The quantum mechanical transformation 
theory involves new probabilistic features that are neither probabilistic "ano- 
malies" nor mere numerical algorithms. They are a mathematical description 
of particular realizations of probabilistic metaproperties, brought forth by 
a growth of the probabilistic thinking that happened inside the process of 
conceptualization of the microphenomena. A growth that draws attention 
to the necessity, at the most basic level of description where no previously 
elaborated conceptualization is presupposed, to represent and to study the 
cognitive operations by which the observer--who necessarily exists and 
acts--produces the objects to be qualified and the processes of qualification 
of these. Indeed, these operations possess themselves physical characteristics, 
in particular space-time supports, that entail nontrivial consequences for 
the probabilistic descriptions constructed by their help (Mugur-Schfichter 
(1992d)). 

3.2. The Germ of a Concept of Probabilistic Meta-Metadependence 

3.2.1. State Preparations Versus Measurements 

The absence of an integrated perception of the probabilistic organiza- 
tion which underlies the formalism of the quantum theory not only hinders 
a clear understanding of the novelties and of the problems involved in the 
theory, but furthermore it entails insufficiencies inside the theory itself. The 
most important among these stem from the tendency to confound the opera- 
tions of state preparation with measurements, that is, to mix up temporal 
orders which, quite essentially, do act. In quantum mechanics as it now 
stands the degree of definition of the operations of state preparation is much 
lower than that of the measurement operations. Correlatively, the mutual 
characterization of operations of state preparation and of measurement 
operations is very imperfect. The measurement operations are quite explicitly 
represented by Hermitian linear differential operators and by a well-defined 
calculus with these. The compatibility or incompatibility of two measure- 
ments has been recognized and formally described, and consequences have 
been drawn systematically from this. On the contrary, a general distinct 
definition of what is to be called an operation of state preparation, in contra- 
distinction to what has to be called a measurement operation, is uniformly 
absent. A fortiori, the operations of state preparation are not endowed with 
a mathematical representation clearly assigned to them. They are not even 
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systematically symbolized. Quantum mechanics as it now stands does not 
specify a calculus with, specifically, operations of  state preparation distin- 
guished from the calculus with measurement operations and related with it. 
The term "preparation," nevertheless, is uniformly present. 

3.2.2. Superpositions of  Several States Versus Spectral Decompositions o f  
One State 

The feeble mutual individualization of state preparations and measure- 
ments, combined with a fluctuating and feeble distinction between the state 
vector of  a microsystem and the eigenvector of an observable, entails an 
insufficient distinction also between the principle of superposition (mainly 
discussed by Dirac) and Born's principle of spectral decomposition (the 
expansion postulate). Indeed, though these two principles have been intro- 
duced independently of one another, the spectral decompositions of a state 
vector on the basis of eigenvectors determined by an observable A are cur- 
rently designated as "superpositions of eigenstates of A (even by Dirac 
himself)." The two concepts tend to merge into one another inside the molds 
of a relaxed language. However: 

A spectral decomposition IV/) =Y'j c(~t, aj)luj> possesses the following 
characteristics. 

1. It is a representation that is relative, by definition, to some observ- 
able A. 

2. The expansion coefficients c(vt, aj) are necessarily complex numbers 
(if they were not, the "interference of probabilities" via transformation to 
another representation, an essential feature of the formalism, would 
disappear). 

a. They are in general time dependent in the Schr6dinger representation. 
b. The summed eigenvectors luj> of A, in general an infinity, even a 

continuous infinity, are all involved, by definition. 
c. They are independent of  time. 
d. They are in general not normalized, and furthermore not normaliz- 

able strict sensu. 
e. They are mutually orthogonal by definition, (UklUj)=0, V(k :~j). 
3. Concerning "interference of probabilities": 
a. In consequence of the mutual orthogonality of the summed terms, 

the scalar products (uj[~) with individual eigenvectors luj) yield one-term 
results so that for the individual probabilities 7r(Vt, aj) we have the one-term 
expressions (7) 

7r(q,, ~ ) =  t<ujlw>12 = Ic(v,, aj)l 2 
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which shows the ABSENCE of  "interference of  the probabilities" inside the 
representation with respect to the ONE observable A itself to which the consid- 
ered expansion is relative. 

b. While by passage to another basis corresponding to another observ- 
able B # A that does not commute with A, an "interference of  probabilities" 
does appear: 

7r(~, bk)= ]C(I/fo, bk)l 2 
2 

,~ rkj(A, B)c(~o, aJ) 

- -Z  Irkj(m, B)121C(Wo, aj)l 2 
J 

+ [interference terms involving all the pairs of  products 

Irkj(A, B)lc(~'0, aj), Irjk(A, B)lc(~'0, ak)] 

This is an abstract sort of  interference which is relative to a PAIR of noncom- 
muting observables (A, B) and which, though it entails certain consequences 
[as well as many false interpretations (see, e.g., Bohm, 195i, pp. 384-386)] 
is devoid of  a directly observable counterpart: the square roots c(~0, aj) of  
all the values of  the probabilities Jr(V, aj) of  the eigenvalues aj emerging 
when a measurement of  the observable A is performed on a state with 
state vector I~> "interfere" abstractly, numerically, in the value of each 
probability ~r(V, bk) of  an elementary event bk that might emerge / f a  meas- 
urement of the observable B that does not commute with A were performed 
on that same state. In what follows this sort of  conceived interference by 
transformation from a representation A to another representation B that 
never coexists with A will be called interference relative to incompatible 
observables. 

On the contrary, a superposition of states I vahc_.) = ~,1 ~',) + Zb[ I]/b) -[- 
A,cIVc) +" " " possesses the following as if opposed characteristics. 

1. It is a representation not tied to some particular observable. 
2. The coefficients of  linear combination )~, )~b, )~a . . . . .  can relevantly 

be chosen to be real numbers. Nothing in the formalism interdicts that. They 
are time independent. 

3. It is permitted to superpose an arbitrary number--usually a small 
number - -o f  state vectors I vta), [I/,gb) , . . �9 �9 

a. They are in general time dependent in the Schr6dinger representation. 
b. They are always normalized. 
c. In general they are NOT mutually orthogonal. However, when 

in particular they are orthogonal, the scalar products (v/~l~,b~...), 
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(~b[ ~abc...),.-. acquire one-term expressions (val gabc...) = ~ ,  (IPtb[ [Vabc. . . )  = 

A.b, etc., analogous to what happens in the case of  a spectral decomposition 
for the products (ujl~t). But notice that in this case, in contradistinction to 
the products (uj[ g )  = e(g0,  aj) = v/-~(V, aj), the values of the "correspond- 
ing" products (g~[ g,bc...) = A,k, k = a, b, c, . . . do not possess a probabilistic 
significance. 

4. Concerning "interference of  probabilities :" 
a. The scalar products (uAV~bc...) with individual eigenvectors [uj) from 

the basis of  an observable A do not have a one-term expression, they have 
a multiterm expression (Uj[Vtab~...)=~k ~,k(Uj[ Iltk), k = a ,  b, e . . . . .  So when 
the square modulus is calculated in order to estimate the corresponding 
probability ~r(V,b ..... aj), an "interference of probabilities" appears no matter  
whether or not the superposed terms IV,), [Vb), IV,) . . . .  are orthogonal, 
insofar as these terms are not themselves elements [uj) from the basis of  A 
(which can happen either in the case of  a discrete spectrum or approxi- 
mately). For instance, for a superposition state vector with only two terms 
the elementary predictional probabilities concerning the elementary out- 
comes aj for an observable A acquire the well-known "interference form" 

zc(V~b, aj) = I(uA ~.b>l 2 

= IA, o(uA ~,o) + ~,o(uj[ ~,b)l 2 

= I,LI=I(ujl ~'a>l = + [~bl=l(uj I ~0>l  = 

+2 Re{ (~a)(Zb)*(uA q~) (uA ~b > *} (8) 

This is a sort of  interference of  probabilities where the quantum mechanical 
theory o f  transformation f r o m  the basis o f  one observable to the basis o f  
another observable is not involved, an interference that emerges "directly" 
with respect to the summed  state vectors f o r  any O N E  observable. So we 
shall call it intetference relative to the superposed state vectors and we shall 
distinguish it radically from the interference relative to incompatible 
observables. 

b. When one considers, for a superposition state vector, the interference 
relative to the superposed state vectors that concerns the position observable 
A = X, then if the spatial supports of  the superposed state vectors are not 
disjoint--the corresponding form of the type (8), 

~r (~'~b, xD = 1(5(x-- xDl~.b)l = 

= IZ~(~(x-  xDI ~'~ + z b ( ~ ( x -  xDI q,b)l ~ 

= [A.a[2[ Va(Xj)[ 2 + I,~bl21V'b(Xj)I 2 

+ 2  Re{ (A , ) (Ab )*V , ( x j ) vb (x j )* }  (8') 
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is associated with the amply discussed interference patterns in the physical 
space, directly observable on the domains where the spatial supports of the 
summed state vectors overlap. In this sense the interference relative to the 
superposed state vectors, in contradistinction to the interference relative to 
incompatible observables, is not an abstract interference. The possibility of 
such observable interference patterns disappears only if the spatial supports 
of the superposed state vectors are all mutually disjoint, in which case (8') 
acquires the degenerate noninterferent (but still multiterm) form 

7r(~'ob, xj)  = I,LI21 ~,a(xDI 2 + IZbl2l ~,b(xDI ~ (8") 

The mutual specificities emphasized above do not in the least manifest 
an identity between spectral decompositions of one state vector and superpo- 
sitions of several state vectors. Quite on the contrary, they manifest a sort 
of opposition. In particular, they reveal a splitting of the central concept of 
interference of probabilities. And whereas the interference relative to incom- 
patible observables has an abstract character, the interference relative to 
superposed state vectors is tied to directly observable effects. 

Now, where do the observable effects tied to superposition state vectors 
stem from? 

In what follows we show that they are essentially related to the "multiple 
structure" of the operation of state preparation that produces the state 
corresponding to the considered superposition state vector. 

Consider for simplicity a two-term superposition state vector 

I v,a~) = ~,al ~,o) + ~bl ~ )  (s)  

tied to a state preparation P(vab). If the state I Vb) of the studied system is 
considered separately, it stems from some operation of state preparation 
P(V~). If the state IVb) of the studied system is considered separately, it 
stems from some operation of state preparation P(Vb). If now the superposi- 
tion state vector I Vab) of the studied system is considered, it stems from 
some operation of state preparation P(Vob), again only "one" operation of 
state preparation since it produces the "one" pure state I V~b) that entails its 
own specific quantum mechanical predictions. However, the operation of 
state preparation P(V,b) somehow is conceived to "depend" on the two 
other operations P(V.) and P(l~rb) that are tied to the two state vectors IV.) 
and I Vb) that wouM have been produced by these operations, respectively, 
/f they had been realized separately. Implicitly but quite essentially, these 
other two preparation operations are supposed to be (1) mutually distingu- 
ishable, (2) realizable separately, and (3) combinable so as to constitute 
together "one" other operation, distinct from both P(V~) and P(Vb) and 
realizable on one previous initial state of the studied system, associated with 
an initial state vector I Vi) of that system. 
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So---quite systematically--in the case of a superposition of state vectors 
we can write symbolically 

P(Vob) =f(P(v-) ,  P(Vb)) (f :  some function) 

In essence the principle of  superposition is a statement, not directly about 
state vectors, but, more fundamentally, about a--past--operation of  state 
preparation. 

But these two different operations of state preparation P(V.) and P(I/tb) 
involved in the operation P(V.b) have not been realized separately. They 
have been realized only "together," "inside" the global procedure P(V.b). 
So the states represented by the corresponding state vectors IV.) and IVb) 
also, which could have been produced separately, individually, via the separ- 
ate realizations of the operations P(V.) and P(Vb)--whieh entails that they 
are normalized--have not been realized separately via P(V.b). They are only 
conceived of  individually, in relation with the one state vector IV.b) corre- 
sponding to the one realized global operation of state preparation P(V.b) 
(realized either by the observer or by some "natural" substitute of the 
observer, as in the case of atomic states of an electron) ; conceived of AND 
explicitly represented in the mathematical expression (S) of IV.b), where they 
play a role of elements of  reference in the calculation of any individual 
probability x(V.b, aj): as can be read from relation (8), rC(V.b, aj) is a 
function of zr(V., aj) and Jr(Vo, aj). In particular, when one considers the 
position observable A = X and the corresponding presence probabilities, this 
reference concerns patterns of impacts observable in the physical space. The 
algorithm (8) applied to the calculation of an individual presence probability 
~r(V.b, Xj) as a function of the individual probabilities lr(V., xj) and 
Zr(Vb, xj) permits, via (8'), a quantitative comparison between (1) the observ- 
able pattern of position registrations corresponding to the realized state 
represented by the descriptor I Vab) and (2) the patterns that would be pro- 
duced by each of the states represented by the descriptors [~//a) and I Vb) if 
these states acted (or effectively do act) separately on the device for the 
registration of eigenvalues of the position observable. 

What is designated by the term "interference of probabilities" as applied 
to observable patterns of  position registrations is precisely the difference 
brought forth by this comparison between the two patterns corresponding 
separately to IV.) and [Vb) and the pattern corresponding to IV.b). One 
sees how such patterns are essentially tied to the "multiple" structure P(V.b) = 
f (P(v. ) ,  P(Vb)) ( f :  some function) of  the involved operation of state 
preparation. 

And notice that, remarkably, overlapping of the spatial supports of the 
superposed state vectors at least somewhere in space-time (if time is left 
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to increase indefinitely) is somehow related to a "multiple" structure 
P(V,b) = f (P(va) ,  P(Vb)) of the operation of state preparation. Here the fact 
comes somehow into play (HOW?) that in a superposition of states the 
combined state vectors are time dependent, while the coefficients of linear 
combination are not. 

We summarize in general terms. 

In a superposition representation (S), the unique physically realized 
operation of state preparation is the one symbolized by the notation P(vab...), 
of which the unique result is the one symbolized by the global notation 
]Vab...). This--past---operation of state preparation P(1Fab... ) somehow 
involved, "contained," two or more other operations of state preparation, 
P(Va), P(Vb) . . . . .  mutually "distinct" and which can be realized separately. 
The state vectors IV,), IVb) . . . . .  corresponding to the states that wouM 
have emerged if P(V,), P ( I / t b ) ,  - �9 �9 , had been accomplished separately, are 
explicitly specified inside the formal expression of the state vector I V~b...) 
corresponding to the unique physically realized state produced by P(vab...). 
There they play the role of elements of reference incorporated into the mathe- 
matical representation: It is with respect to them that there emerges a con- 
cept of interference of probabilities that is tied to patterns of position 
registrations directly observable in the physical space. 

This is in strong contrast with what is involved in the expression of a 
spectral decomposition. There the representation does not designate observ- 
able effects of a particular type of structure of the past operation of state 
preparation of the studied state vector. What is represented in a spectral 
decomposition of a studied state vector IV) is the observable effects of a 
future operation of measurement of an observable A performed on IV) 
(Figure 2). The representation is given in terms of the projections of the 
considered state vector IV) onto--all--the abstract eigenvectors [uj), VjeJ, 
of the considered observable A. Such an eigenvector [uj), according to its 
very definition by the equation for eigenvectors and eigenvalues of A, is not 
in general a descriptor tied to a state producible by some specific operation 
of state preparation. It is only part of the mathematical representation of a 
framework for the qualification of quantum mechanical states, a framework 
introduced by the observable A. Namely, the eigenvectors ]ui) , VjEJ, define 
a family, specific to this observable A, of "directions of qualification," of 
"semantic directions" (unidimensional, in the absence of degeneracy) each 
one of which is associated with an observable eigenvalue of A. In general 
these semantic directions are only tangent to the Hilbert space that contains 
the state vectors IV); they are exterior to this space, images of elements 
endowed with a primary definition only inside the dual of the Hilbert space 
of the system. By a function (involved in a linear functional on the space of 
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the states) the eigenvector [uj> corresponding to an eigenvalue aj of an 
observable A qualifies some feature (which one exactly?) of the same global 
factual situation that is also qualified by the eigenvalue aj. As to the eigen- 
value aj itself, it qualifies the individual observable outcomes ~, with 
f A ( V j )  = aj of the elementary quantum mechanical chain experiments, which, 
in their turn, via the corresponding probabilistic metaqualifications x(~,, aj), 
qualify globally what is called a "quantum mechanical state" and is represen- 
ted by a state vector IVt>. We sum up: 

A spectral decomposition I~t>=~jc(~ ,, aj)luj> is referred to a future 
operation of measurement of an observable A, upon the studied--already 
prepared--state vector 1~'>. Each eigenvector [uj> of A is a descriptor of a 
particular qualification from a whole framework for qualification introduced 
by A, a framework that is defined on the whole space of the state vectors. 

Though a descriptor luj> is utilized for calculating the probability of an 
outcome fA(Vj) =aj  for any given state vector, there is nothing probabilistic 
in this descriptor itself. The descriptor luj) is tied to one eigenvalue aj (in 
a nondegenerate situation), so it points toward an essentially individual 
predication. There is no reason whatever to require normability for the mathe- 
matical descriptor luj), as for the state vectors [~t>, which--by definition-- 
generate probability measures. Quite on the contrary, this would simply be 
grossly inadequate from a semantic point of view. 

Correlatively, the spectral decomposition with respect to one observable 
A--by itself---entails no interference of probabilities, neither observable nor 
abstract. An (abstract) interference of probabilities tied to spectral decompo- 
sitions arises only by transformation from the basis of one observable A to 
the basis of another observable B that does not commute with A. 

Since the eigenvectors are descriptors with individual meaning, the 
"problem" of normalization of the eigenvectors of observables with continu- 
ous spectrum is a false problem. So the "resolution" by the construction of 
state vectors yielding approximated normed representations of eigenvectors 
is a resolution without a corresponding problem, just noxious, mathemati- 
cally generated semantic fog that masks under a veil of superficial uniformity 
a radical solul~ion of continuity, in the space of the concepts, between eigen- 
vectors and state vectors. Even the standard theory of probabilities rejects 
(implicitly of course) the confusion between eigenvectors and state vectors. 
This, for instance, is illustrated by very interesting remarks by Cohen 
[Cohen, 1988, pp. 991-992, equations (54)-(59)]. In order to understand 
deeply the veritable problem involved in the quantum mechanical description 
of measurements, in order to formulate it in better analyzed terms and to 
form a veritable answer to it, the conceptual difference between the designata 
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of the eigenvectors and those of state vectors has to be recognized as essen- 
tial, to be specified, and to be set at the bottom. 

In short, the code is in essence as follows for distinguishing between the 
factual counterparts of, on the one hand, the superposition writings, and on 
the other hand, the spectral decompositions: 

1. A linear combination of an arbitrary number of (in general) time- 
dependent and mutually nonorthogonal "state" vectors of a system S, all 
normalized, that is not relative to some observable and that can, in particular, 
be relevantly written with real coefficients, can be regarded as: The formal 
expression of the result of one operation of state preparation somehow 
"depending" on (referrable to) other (two or more) operations of state 
preparation, individually realizable but not individually realized, and which 
are such that if they were individually realized, would produce the states 
corresponding to the linearly combined state vectors. 

2. A linear expansion of one normalized "state" vector, on the basis of 
all the mutually orthogonal and (in general) infinitely numerous and nonnor- 
malizable " eigen"vectors of an observable A, with complex and time-depen- 
dent expansion coefficients, can be considered as: A formal expression of the 
qualification of the physical state represented by that state vector, inside the 
framework for qualification of any quantum mechanical state introduced by 
the observable A; namely, a probabilistic qualification of the state by the 
probability densities Ic(~,aj)12=l(uM/)l 2 of the observable outcomes 
fA(Vj) =aj of the quantum mechanical elementary chain experiments per- 
formed with that state and with the measurement evolutions MA for A. 

In particular, it can happen that the spectrum of the considered observ- 
able A is intrinsically discrete (Hamiltonian of a bounded state or a kinetic 
momentum). This entails then an identification of each eigenvector with a 
state vector of a preparable state [which involves then also a definite finite 
norm for the eigenvectors, as well as mutual orthogonality, and independ- 
ence of time for the ensemble (a discrete infinity) of these "eigen-state vec- 
tors"]. Nevertheless, even in these particular situations which introduce for 
each eigenstate vector a cumulation of two distinct roles, the conceptual 
difference still quite fully subsists between the designatum of a superposition 
of several eigenstate vectors on the one hand (way of preparing the superpo- 
sition state vector), and on the other hand the designatum of a decomposi- 
tion of a state vector along the whole infinity of eigenstate vectors from the 
basis of eigenvectors of the considered observable (way of qualifying that 
state vector). And the existence of this difference continues to be even for- 
mally disclosed by the subsistence of the possible relevance, or not, of real 
coefficients. 

So the code explicated above always avoids confusion between superpo- 
sitions and spectral decompositions. (The removal of this confusion might 
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lead to a clear understanding of the superselection rules. It might also clarify 
the significance of conceptually rather obscure perturbation methods used 
for the calculation of the spectrum of the energy of quantified systems, etc.) 
But resort to the code ceases to be necessary as soon as one is in possession 
of the concept of probability tree. By the simple contemplation of the figure 
that represents a tree, it becomes obvious that the superpositions concern the 
primary operation P(g0) of generation of an object for subsequent examina- 
tions, while the decompositions concern the secondary operations MA of 
qualification of this object (Figure 2). It jumps to the eye that these two 
concepts concern essentially different phases of the genesis of the quantum 
mechanical events, placed at two different temporal levels of a tree, imbedded 
in different space-time domains and possessing essentially different cognitive 
roles. 

3.2.3. The Germ of a Calculus with Whole Probability Trees (Probabilistic 
Meta-Metadependence ) 

The quasiconfounded treatment of superpositions and of spectral 
decompositions hides the important fact that, in a certain sense, a superposi- 
tion of states--but not also a spectral decomposition--involves a germ of 
a calculus with several probability trees, globally considered. 

Consider a state vector IV) which is instructionally defined by the speci- 
fication of only one preparation procedure P(g). Then the probability meas- 
ures from the observational spaces (3') of the corresponding probability tree 
are completely specified by reference to the only one state vector IV/) tied to 
the unique operation of state preparation P(g)  (for simplicity we suppose 
measurements directly on the prepared state [g), i.e., we consider the par- 
ticular case t - t 0  = 0, IV)=Iv0)) .  For example, in (3')A the measure ~r(V/, aj) 
is calculable on the basis of the postulate (2), n( ~, a j )=  I<ujl W>l 2, by making 
use exclusively of the state vector IV). But the situation changes if we con- 
sider a superposition state vector 

I v,~b) = zolv, o) + ; t b l ~ )  

(as, for example, in the case of Young interference). Then--physically--the 
corresponding preparation P(g~b) still introduces only one state [~',b), so 
only one probability tree. Nevertheless, as has been stressed, the probability 
measures from the observable spaces (3') of this unique tree are now calcula- 
ted by reference to, also, the two state vectors [g:) and I gb) from the 
mathematical expression of [~':b). This happens algorithmically, via the com- 
bination of (a) the additive quantum mechanical representation of the state 
IV:0) by a superposition writing, (b) the spectral decomposition writings, 
and (c) the probability postulate (2). Indeed, when according to (S) and (2) 
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the measure lr(~,,b, aj) has to be calculated by the use of the relation (8), 

l r (~b,  aj) = I~al2l(ujl ~,~)l 2 + I~,bl21(ujl q,b)l = 

+ 2 Re{(~a)(&b)*(ujI g~)(ujl Iltb) *} 

or, in particular, (8'), 

~r(~'~b, Xj) = I,~a121 ~'o(Xj)I 2 + 1&121 q,~(xj)l 2 

+ 2 Re{(Za)(Ab)* ~,,(xj) ~tb(Xj)* } 

then three probability trees are brought into play--globally.---namely the 
unique tree ~-'(~t~b) physically generated by the unique physically realized 
preparation P(~t~b) and the two trees ~ (V , )  and Y-(gb) corresponding to 
the two preparations P(g, )  and P(~'b) on which the preparation P(Vt~b)= 
f(P(g~),  P(gb)) "depends"---considered separately--which have not been 
realized individually, but, being reflected in the writings by the specification 
of their possible individual results [~ta) and [Vb), act there as a conceptual 
reference. In fact, what is brought into play is a structure of  three mutually 
consistent rules of "formal composition," namely the rule of composition of: 

1. The reference-preparation operation P(~a) with the reference-prep- 
aration operation P(Vb): Some definition of the function f (P(v , ) ,  P(qtb)= 
P(gtoh)) and of its physical counterpart are supposed to "exist": this supposi- 
tion in fact constitutes the essence of the principle of superposition. However, 
this basic definition is not spelled out inside quantum mechanics as it now 
stands. 

2. The reference-state vector ]g~) corresponding to the preparation 
operation P(~t~), with the reference state vector [~'b) corresponding to the 
preparation operation P(~gb) [the additive rule (S)]. 

3. The corresponding reference-observable probability measure 
[&(ujlv.>[ 2, with the reference observable probability measure [Ab(Ujllltb)[ 2 
[the quantum mechanical algorithm (2 + S)= (8)]. 

Globally, what comes here in implicitly is a complex algorithm of formal 
composition of the two only conceived reference probability trees .Y-(0/a) 
and ~--(~'b), such as to yield, by a sort of"probabilistic dependence" defined 
between entire trees, precisely the result postulated by the relation (2) for the 
probability measures from the unique tree Y-(~',b) which is physically real- 
ized. Such an algorithm amounts to endowing the mathematical representation 
assigned to each level of the unique physically realized tree (operation of 
state preparation, prepared state vector, observable probability space), with an 
incorporated reference to the corresponding level of  the two other, only con- 
ceived trees. 

Obviously, such a representation, endowed with such a reference, trans- 
gresses essentially the concept of one probability tree; it involves certain 
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metaqualifications with respect to the qualifications which can be expressed 
inside the nonreferred representation of one single tree. We are here in the 
presence of a probabilistic meta-metadependence with respect to the present 
standard concept of probabilistic dependence (since the quantum theory of 
transformations involves already--inside a unique tree--a sort of probabilis- 
tic metadependence with respect to the probabilistic dependence in the sense 
of the theory of probabilities as it now stands). Only if this probabilistic 
meta-metadependence, globally considered, is taken into consideration also 
does it become possible to try to encompass the whole significance of the 
quantum mechanical principle of superposition. 

Thus, inside quantum mechanics as it now stands, the germ of certain 
algorithms can be discerned corresponding to an implicit calculus with entire 
probability trees. This happens each time that superposition states are repre- 
sented. (This happens also each time that successive measurements are repre- 
sented. But then the conceptual insertion is different: Instead of the principle 
of superposition, the projection postulate acts at the bottom, identifying the 
operations of preparation in the general sense, with the particular category 
of preparations by measurement evolutions. This distorts the topology and 
flattens the volume of the conceptual space involved.) However, with the 
implicit and incomplete quantum mechanical calculus with entire probability 
trees we penetrate into this confused frontier zone--which always does 
exist--where the representations already elaborated by a theory plunge into 
the still unconceptualized. 

The basic lacuna is that the operations of  state preparation are devoid of  
mathematical representation. 

This is a lacuna of which the consequences mark the intelligibility of 
the whole orthodox formalism. Below we compensate for it. 

4. OPERATORS OF STATE PREPARATION AND THE 
PRINCIPLE OF SUPERPOSITION 

4.1. Operators of State Preparation and Their Calculus 

What operators and what calculus with these can be defined in order 
to represent mathematically the physical operations of state preparation in 
a way that is consistent with the orthodox formalism as it now stands? 

Suppose that G(~/) (G: generator) is an operator that represents mathe- 
matically the operation of state preparation P(~,). For consistency with the 
linear formalism of quantum mechanics let us require (3(~,) to be a linear 
operator. Then, to represent mathematically the preparation of the states 
with state vectors [Vo), [~/fb), and [Vob)= &alga)+ ~b[~b), we have to write, 
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respectively, for any choice of some initial state vector IVy>, 

G(N.)INi> ---IV.>, G(Nb)INi> = INb>, G(N.b)I ~,-> = IN.b> 

[read: G(g. )  acting on some--any--previously existing state with state vec- 
tor ]Vi> (known or not) generates out of it the state with state vector I~.>, 
etc.]. The unknown functional relation f from the representation P(Vab)= 
f (P(v-) ,  P(Vb)) concerning the three factual operations P(~.b), P(~t.), and 
P(~b) involved in the preparation of a superposition state vector IV.b> = 
A.I ~ . ) +  Zbl Vb) will somehow translate into a formal relation g, G(~ab)= 
g[G(v . ) ,  G(I/tb)]. To find the translation, we write down the conditions, in 
agreement with the linearity required for the G(N), 

G(Vab) l V,> = IV.e> = A.al No> + A+IVb> = Z.G(va) I N,> + ZbG(g0) lV;> 

= [Z~G(V.) + ZbG(Vb)]l ~',> (9) 

The function g that connects the operators G(Vob), G(V.), and G(Vb) is the 
same linear combination that connects the state vectors lv.b>, I Va>, and lvb>. 
So in general terms 

g[G(va), G(gb), G(Vc) . . . .  ] = G(V.bc...) 

=y.  ~kG(Vk ), k=a ,  b, c . . . .  (10) 
k 

Furthermore, since for the well-known quantum mechanical operator of 
projection onto IV>, P~,, we have P~,I~'~> = I V>(VIvi>, u ~>, while by defi- 
nition G(~t)lN~> = IV>, we can write 

G(V) = (I/<vIV,>)P~, (11) 

which we shall call a "normalized projector" onto IN): 

A "normalized" projector Pv. yields an adequate representation for the 
concept o f  an "operator G(V) of  state preparation" such as it is required 
by (10). 

From (10) and (1 l) it follows that for a superposition state vector IV.bc...> 
we can write 

G(~,,b~...) = (1/< V,,b~...] V,> )Prob,. 

k=a ,  b, c . . . .  (12) 

The operator of  preparation o f  a superposition state vector can be repre- 
sented mathematically by a linear combination of  normalized projectors. 
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Which includes automatically the particular case of preparation by a meas- 
urement evolution MA posited by the orthodox projection postulate: In that 
case the state preparation operator becomes indeed (1/(uj[gi))Plo,  where 
[uj) is the eigenvector of the observable A corresponding to the registered 
eigenvalue aj. But it has to be clearly realized that in the formalism as it 
now stands the projectors Pv, are not utilized with the fundamental role of 
general formal representatives of the operations of state preparation. The 
projectors Pv, are utilized currently in the algorithms connected with meas- 
urement operations [density (or statistical) operators]. 

The definition (11)+ (12) has interesting implications concerning the 
coherence between the semantics to be assigned to the formal feature of 
commutativity of two linear operators and the nonformalized qualification 
of "compatibility" drawn from the current language: 

For consistency with the linear formalism of quantum mechanics we 
have required linearity for the operators of state preparation. This entailed 
the necessity, in (12), of  a linear superposition of distinct, so noncommuting 
normed projectors Pro, Pvb,-- �9 that shall a/ /act  on one same initial state 
vector I~ti), while two commuting projectors--which reduce in fact to one 
single projector---cannot generate a superposition state vector because they 
(it) cannot represent the required distinct actions on one same initial state 
vector IV/i). In this sense: 

For the mathematical representation of the process of generation of a 
superposition state, distinct and noncommuting operators of state preparation 
are "compatible" operators. 

This is as if "opposite" to what happens for the mathematical representation 
of the operations of measurement of dynamical quantities: two dynamical 
operators, as is well known, are considered to be "compatible" when they 
commute, while if they do not commute they are considered to be 
"incompatible." 

Now, we have emphasized that in the case of the representation of 
measurement operations, the factual counterpart of the "compatibility" of 
two---commuting~ynamical operators A and B consists of the possibility 
of individual measurement evolutions MAn for A and B possessing one com- 
mon space-time support. This is what entails the possibility, from each (one) 
registered "needle position" Vj that has been the unique factual observable 
outcome of one given reiteration of a measurement evolution MAn, to calcu- 
late a pair of two correlated eigenvalues aj-=fA(Vj), b j=fB(~)  (which is 
verbally designated as the possibility of a "simultaneous" measurement of 
the observables A and B). While if A and B do not commute, the individual 
measurement evolutions MA for A and Ms for B possess necessarily distinct 
space-time supports, which is designated by the assertion that "simultaneous 
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measurements for A and B are not possible" (the factual substance of Bohr 
complementarity). 

In short: When exclusively measurement operators are considered, the 
two qualifications "commuting" and "compatible" apply to the same suben- 
semble of operators, so that they tend to be identified. But when also normal- 
ized projectors as representatives of operations of state preparation are 
considered, the domains of application of these two qualifications separate. 
So a new language emerges which concerns a more complex situation. We 
shall now establish explicitly this new language. Take into account: 

1. The usage of language found above and the corresponding designata 
for the case of measurements. 

2. The fact that two different projectors do not commute, while two 
commuting projectors become identified. 

3. The fact that the different projectors involved in the preparation 
of a superposition state represent individual operations that are physically 
different and, nevertheless, can all act on one same initial individual-- 
factual situation corresponding to one same initial quantum mechanical state 
vector ] ~/i). 

4. The systematic distinction between abstract descriptor and its phys- 
ical designatum. 

5. The systematic distinction between (a) the individual level of descrip- 
tion (where are placed the various individual realizations of an operation of 
state preparation, or of a measurement evolution, or of an elementary chain 
experiment), and (b) the metalevel of probabilistic description (where is 
placed by definition the quantum mechanical concept of state vector IV)) 
and, correlatively, the concept of "one" (complete) quantum mechanical 
measurement involving a whole ensemble of elementary chain experiments. 

6. The requirement of one same stable language valid no matter 
whether measurements or state preparations are described. 

The elements listed above entail together the following rather complex 
dictionary. 

1. "Compatibility" or "noncompatibility" of two linear operators 
(dynamical or not): respectively, the relevance or not of the action of both 
these operators on one INDIVIDUAL realization of a state of the studied 
system corresponding to one given quantum mechanical state vector. 

2. "Commutativity" or "noncommutativity" of two linear operators 
(dynamical or not) : respectively, the identity or the disjoint character of the 
space-time supports of the individual physical operations represented by 
these two operators. 

3. Multiplicative composition of the action of two (or more) commuting 
dynamical operators upon one given state vector IV): mathematical expres- 
sion of the factual identity of two (or more) processes of qualification of any 
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one individual realization of a state of a system corresponding to [g),  via 
one common sort of individual measurement evolutions MAB... realizable on 
one same space-time support, but of  which the--one, common--factual  
observable outcome Vj, once it has emerged, can be then conceptually worked 
out in various ways, aj=fA(Vj),  bj=fB(Vj), etc. (which justifies the above 
somewhat misleading wording "two or more" processes of qualification). 

4. Additive composition of two (or more)--necessarily--noncommut- 
ing operators of  state preparation (normalized projectors) upon one given 
initial state vector I~';): mathematical expression of the generation, out of  
any one realization of an individual factual state of the studied system tied 
to the quantum mechanical state vector 1~,,.), of one realization of a new 
factual state of  the studied system tied to a new quantum mechanical state 
vector [go) via the action of two (or more) factually different processes of  
"preparation" possessing disjoint space-time supports, all these processes 
being posited to end at a same moment, which is the initial moment to of  
the newly prepared state vector 1~o)= [Vt(t0)). 

With this dictionary, we can now say that: 

In the case of the representation of  an operation of state preparation 

G(g,~bc...) = (1 / (  ~,,bc...I V,) ) Pv,~, .... 

=~'. (~k/(O/kl~';))Pv, k, k=a ,  b, c . . . .  
k 

that generates a superposition state, liP',be...)=~ (~l.kll/rk), the distinct non- 
commuting normalized projectors (1/(V,bc...I ~i) )Pv,~ that are involved corre- 
spond to compatible physical actions of which nevertheless the space-time 
supports are disjoint. 

So quantum mechanics permits (could we even say that it requires?) a 
certain coherent prolongation of its formalism and its language, where the 
operations of state preparation (all of  them, not only those consisting of 
measurement evolutions MA) are mathematically represented by operators 
of  state preparation G(~') that are normalized projectors combined accord- 
ing to a specific calculus entailed by the fact that the space of the normalized 
kets I~') is posited to be a vector space. This calculus with operators of state 
preparation is distinct from the calculus with dynamical operators, which 
represent measurements and are tied to the principle of spectral decomposi- 
tion. This finally demonstrates that the formal structure of the quantum 
theory by no means entails the orthodox flattening identifications between 
preparations and measurements and between superpositions of several state 
vectors and spectral decompositions of one state vector: It rejects them in 
fact, if we go to the bottom. 
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The definition (11)+ (12) of operators of state preparation effaces the 
lacuna in the rules of combination of two or more probability trees regarded 
as wholes. So the implicit quantum mechanical calculus with whole probabil- 
ity trees, expressing a new probabilistic concept of probabilistic meta-meta- 
dependence, is now entirely explicated. But the most important consequence 
is the elucidation of the physical significance of the principle of superposi- 
tion, stated below. 

4.2. The Minimal Model Involved by the Principle of Superposition 

In quantum mechanics as it now stands the mathematical expression of 
the principle of superposition is referred exclusively to the state vectors. This 
is misleading. Indeed fundamentally--the principle of superposition refers 
to operations of state preparation. And the definition (11)+ (12) is equiva- 
lent to a deepened reformulation involving now explicitly these operational 
roots also. This permits progress concerning the physical implications of the 
principle. 

Consider a two-term superposition state vector IV.b) = &.[ V~) + ~b] Vb). 
We have shown that in order to represent mathematically the operation of 
preparation of IV.b) we must make use of a normalized projector 

(1/( ~llab [ Vi) )Vq'ab = (~a/ ( Va Vi) )Vw. + ~b/ ( Vb[ vi)V~6 

that is a linear combination of two distinct normalized projectors 
(I/(v.Vi))Pvo and (1/(vbl Vi))Pv,~ which act on one initial state vector 
[Vi) out of which they generate Iv.b): 

[(X./( V.I ~',) )P~,. + Ab/( VO[ v,)P~,~]I V,) = I W.o) 

We have also shown that this mathematical representation involves the 
assumption of "compatibility" of the physical processes described by the 
two operators (1/(V.  Vi) )Pro and (1/(  Vbl V~))P~,b, in a definite sense which 
concerns the space-time features of the mentioned processes. Now, in conse- 
quence of the conditions of norm, the two spatial domains A(l~t.[ 2, t) = 
A(a) and A([Vb[ 2, t )= A(b), where IV.) and [Vb), respectively, yield presence 
probabilities that are not quasinull, arefinite with respect to any fixed defini- 
tion of quasinullity. And, since the current formulation of the principle of 
superposition asserts that the state represented by IV.b) can be created for 
any pair IV.) and IVb), we are free to imagine in particular that Iv.(x, t)) 
and IVb(X, t)) are such that, at a given time t (in the observer's referential) 
the two spatial domains A(a, t) and A(b, t) are disjoint and the (purely 
spatial) distance that separates them is very big, say, of the order of light- 
years. Nevertheless, as it is explicitly expressed by the new expression of the 



1746 Mugur-Schachter 

principle of  superposition 

[(A.a/(~v,I Vzf) )Pv, o + Zb/( ~bl Vz~}Vv, b] I ~v,) = I ~v,~} 

quantum mechanics still assumes that there does exist an initial state 
vector Iv/i(x, t ')), t '<  t, of  the ONE considered "system," such that the two 
preparation processes represented by the two mathematical writings 
(1/(~'aVzi))Pvo and (l/(~Ubl~'i))Pv, b can both take place "compatibly" on 
each-individual realization of  a factual state corresponding to the state vector 
I~'i(x, t ')). But this is a model (Figures 1 and 2): 

The principle of superposition associates to the entity called "one" 
quantum system a model according to which an individual factual realization 
of  a state of  this entity can be such that--whatever be other nonspecified 
qualifications of  it--this state covers an arbitrarily big spatial domain, not- 
withstanding that in some (nonspecified) sense a quantum system is con- 
ceived to be also "microscopic" (it is even often called "one microsystem"). 

Horrible dictu, but the orthodox formulation, though it proclaims inter- 
diction of  any model, in fact is itself founded on a model. And this model, 
while on the one hand it violates the natural slopes of  the connection between 
what we would agree to call a microsystem and the designatum forced upon 
us by the principle of  superposition, on the other hand is not achieved, not 
worked out. In this sense it is a "minimal" model. Camouflaged loosely 
inside the conceptual volume delimited by its noncommittal absence of  full 
specification, this minimal model fluctuates there implicitly leading to con- 
fusion and perplexity. Whether it is explicitly declared or not, this minimal 
model is there, encapsulated into the principle of  superposition. And it acts 
on our speaking and on our thinking. It literally invades them in the form 
of  problems and paradoxes that haunt the quantum theory ever since it 
appeared. "Schr6dinger's cat" or more abstractly "the reduction problem," 
as well as the "locality" problem, are only the most striking distillations and 
scandalous amplifications of  consequences of  this hidden unfinished model. 
Only further specifications could remove the ambiguities that emanate from 
this model, and perhaps thereby also its queerness. 

5. A MEASUREMENT THEOREM 

We have brought forth a radical distinction between, on the one hand, 
preparations and superpositions of  several state vectors, and on the other 
hand, measurements and spectral decompositions of  one state vector. We 
shall now try to understand more clearly how these two distinct pairs of  
concepts are related. 
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Bohm (1951), de Broglie (1956), Park and Margenau (1968) (in their 
study of the "time of flight" method for the measurement of the momentum 
observable), as well as other authors, have already strongly and variously 
emphasized that an evolution law of the descriptor I Vt(x, t)), if it is "good" 
for producing "measurement evolutions" MA of the first kind for an observ- 
able A, possesses specific characteristics. Nevertheless, quantum mechanics 
as it now stands does not introduce an explicit general definition of the 
operator of evolution HA to be tied with the individual measurement evolu- 
tions MA corresponding to a dynamical observable A. It only supposes 
implicitly that, given a "physically significant" quantum mechanical observ- 
able A (as is well known, not any quantum observable is measurable), such 
an operator HA can be found for A. Below we introduce a condition that 
ensures some of the characteristics identified by other authors. 

Condition CHA. A quantum mechanical evolution operator HA can be 
connected with the individual measurement evolutions MA of the first kind 
corresponding to a quantum mechanical observable A only if it works like 
an operator 

[1/(Z(x, t')l~(x, t)~ ]Pz(x,,, ) = ~  [Ic(~, ay)lei~U~/(dPj(x, t')l~'(x, t)> ]P~(x, c) 
j" 

of preparation, out of the studied state vector I~(x, t)), of the superposition 
state vector 

Iz(x, t ' ) ) = ~  Ic(~', aj)lee~U)l%(x, t')>, t '>t 
J 

where (a) ](I)j(x, t')), for any j, is a normed eigendifferential corresponding 
to an eigenvector [uj(x)) of A, (b) the coefficients of linear combination 
reproduce the real parts [c(~', aj)[ of the expansion coefficients c(~t, t, aj) 
from the spectral decomposition [~t(x, t ) ) = ~ j  c(~t, t, aj)[uj(x)) of the stud- 
ied state vector [ ~t(x, t)) on the basis of eigenvectors [u~(x)) of A, the factors 
e g(~)j being arbitrary (in particular these factors can reproduce those from 
the c(Vt, t, aj), or, alternatively, they can be all set equal to 1, thus introduc- 
ing a superposition with real coefficients); and (c) the spatial domains 
Aj( Z, t') where the presence probabilities corresponding to the state vectors 
[(1)j(X, t')) are not practically zero become mutually disjoint up to an 
approximation that can be improved without limitation by increasing t'. 

This condition requires HA such that out of the studied state vector 
I Vt(x, t)) there shall materialize approximately in the physical space, at times 
t'>t, the--abstract--spectral decomposition of I~'(x, t)) on the basis of 
eigenvectors of A. 

The condition CHA, if it is realized, entails the following theorem. 
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Measurement Theorem MT. The event "registration for I~(x, t)) of an 
eigenvalue aj of A" can be represented by the event ["registration for 
Ix(x, t')) of the presence inside the domain Aj (X, t')"] ~ [xEAj(z, t')], in the 
following sense. The numerical equality 

rc(~, aj) = 7r(x~Aj(z, t')) 

where ~r(~, aj) and rc(xeAj(z,  t')) are, respectively, the quantum mechanical 
probabilities of the first and the second event specified above, is realized 
with an arbitrarily improvable accuracy for any measurement evolution MA 
of the first kind. 

Proof Consider the superposition state vector 

Iz(x, t ' ) ) = ~  Ic(~, aj)lei~Jl%(x, t')), t '>t  
J 

as defined in CHA. At any individual space point x we have for IX(x, t')) a 
presence probability which (at most) is reduced to only one term 

re(x, Z )=  IZ( x, t')[ 2= Ic(Ig, aq)leiaq~q(X, t')l 2= [c(~, aq)12lt~q(X, t')[ 2 

where the index q designates, among all the disjoint spatial domains Aj(Z, t'), 
the one to which the considered point x belongs. Then the total quantum 
mechanical presence probability inside the domain Aq(Z, t') is, from the 
expression of re(x, Z) and because of the norm 1 of the IOj(x, t')), 

//:(x~Aq(Z, t '))= Ix(x, t')l 2 dx= aq)] 2 f [(~q(X, t')[ 2 dx= Ic(v, aq)[ 2 

which by the postulate (2) is also the quantum mechanical probability for 
the realization of the eigenvalue aq. This is true only approximately but 
with an accuracy which according to CHA can be improved arbitrarily by 
increasing t', i.e., by improving the mutual disjunction of the spatial domains 
Aj (Z, t') and so the mutual orthogonality of any two distinct state vectors 
I~j(x, t')) and [~k(X, t')). So, with an arbitrarily improvable accuracy, we 
have indeed 

g(x~Aq(Z, t')) = [c(I//(t), aq)l: = ~r(Ig(t), aq), t'> t �9 

This proof, trivial as it is, establishes a crucial connection between the 
two fundamentally distinct concepts of spectral decomposition and of super- 
position of states. More, in fact. It establishes for the general quantum 
mechanical predictional postulate (2) 

rc(~,, a j )  = I<uA V,>12 = I<uA ~,>12 
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an "explanation" deduced from the condition CHA and the particular accept- 
ance of (2) concerning exclusively the position observable, ~r(v, x) = IV(X)[ 2. 
And notice that the deduction is founded upon the distinction between spec- 
tral decompositions of one state vector and superpositions of several state 
vectors. 

Via the condition CHA and the theorem MT the spectral decomposition 
of the studied state vector IV(x, t)) with respect to the eigenvectors of a 
measured observable A appears as only an abstract conceptualprefiguration 
of the superposition state IZ(x, t')) actually prepared in the physical space, 
at later times t' > t, by the quantum mechanical operator HA of measurement 
evolutions MA. 

By a rotation inside the Hilbert space of the system the measurement 
propagator HA brings asymptotically the conceptual spectral decomposition, 
with respect to the eigenkets of A, of the studied state vector [V(X, t)), 
down onto the physical space. The abstract "disjunction" represented by the 
spectral decomposition IV(x, t) ) = ~,j c( v ,  t, aj)luj (x) ) distinguishes inside 
IV(x, t)) between the elements of a family of mutually exclusive "how's" 
represented by eigenvectors [uj), no matter where in space-time, since 
(ukluj) = 0 for j # k ,  but the [uj) are time independent and in general distinct 
[UJ) do not possess disjoint spatial supports. The measurement propagator 
HA transposes this abstract disjunction into a "disjunction" in the physical 
space, represented by the superposition state vector 

Iz(x, c))= Ic(v, aj)lei•laPj(x, t')), t '>t  
J 

that distinguishes between the elements of a family of mutually exclusive 
"where's," the Aj( Z, t'), while how is that what populates the disjoint spatial 
domains Aj(Z, t') is devoid of pragmatic significance: With respect to the 
pair of qualifications how-where, the initial situation and the final one are 
opposed. 

6. CONCLUSION 

We have constructed an integrated view concerning the probabilistic 
organization of the quantum mechanical formalism. This view brings in four 
hierarchically connected descriptional levels: 

1. The elementary quantum mechanical chain experiments (eqmce). 
2. The basic probability chains (1'), (5), which are metastructures with 

respect to the elementary quantum mechanical chain experiments. 
3. The probability trees of a state preparation ~-(P(v0), IV)), which 

are metastructures with respect to the basic probability chains (1'), (5). 
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4. Linear superpositions of probability trees which are metastructures 
with respect to the probability trees, namely compositions of several entire 
probability trees entailed by the principle of superposition (we do not 
mention the quantum mechanical algorithms representing successive 
measurements which, by use of the projection postulate, identify confus- 
ingly the preparable states of a microsystem and the eigenfunctions of an 
observable). 

The integrated view concerning the probabilistic organization of quan- 
tum mechanics has acted as an instrument for critical analyses and for 
constructive developments. 

The quantum mechanical calculi as well as the verbal accompaniments 
of these convey only very mutilated indications concerning the underlying 
probabilistic organization of the formalism. Vectors, operators, equations, 
probability measures, and operational definitions of measurements are 
manipulated according to algorithms. But the more global concepts of an 
elementary quantum mechanical chain experiment, of a random phenom- 
enon (4), of a basic probability chain (1'), (5), and of a probability tree 
Y-(P(~'0), g ) ) ,  with their formal features and their specific semantic con- 
tents, seem to haveremained not perceived. Not even the algorithmic shadow 
(1) of only an isolated basic probability chain (1'), (5), has been clearly 
recognized as a probabilistic whole. Afortiori, the distinction between formal 
entities and factual entities remained so dispersed and so vague that the 
central connecting role of the identities (7) has not been realized fully. This, 
no doubt, is due to the particular complexity of the random phenomena 
studied in quantum mechanics and to the unusual potential-actualization- 
actualized nature of the roots of the elementary events produced by these. 
The conjunction of these two characters acted as a barrier. We have over- 
come this barrier by a systematic reference to the basic concepts of the 
abstract theory of probabilities, by an explicit specification of the cognitive 
operations by which the "observer," the "conceptor," produces the entities to 
be qualified (quantum mechanical states) and the processes of qualification of 
these (measurement evolutions), and by taking into account systematically 
the space-time aspects of all the phenomena involved. 

This same sort of approach, resumed on a quite general level, has led 
us to a "general method of relativized conceptualization" (Mugur-Sch/ichter, 
1992d). This general method--a genuine "epistemic syntax", permitted us 
to return reflexively upon quantum mechanics wherefrom it stems and to 
further decode its semantic conducts and sharpen its algorithms (Mugur- 
Sch~ichter, 1992c). Most important perhaps, it permitted us to clearly define 
the conceptual status of the quantum theory and to progress toward a model 
unifying quantum mechanics and relativity (Mugur-Sch~ichter, 1992c, 
1992f). 
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